水蓄冷系統(tǒng)通過轉(zhuǎn)移高峰負(fù)荷,能減少燃煤機(jī)組的啟停調(diào)峰頻次,進(jìn)而降低二氧化碳排放。以 1MW?h 冷量為例,水蓄冷系統(tǒng)較常規(guī)空調(diào)可減排 0.6 噸二氧化碳,若在全國范圍內(nèi)推廣,年減排量可達(dá)數(shù)百萬噸級別。這種減排效應(yīng)不僅來自冷量存儲本身,還因減少了電網(wǎng)尖峰負(fù)荷 —— 這意味著可延緩電網(wǎng)擴(kuò)容需求,間接節(jié)約土地資源及輸電線路投資。例如某區(qū)域電網(wǎng)采用水蓄冷技術(shù)后,尖峰負(fù)荷降低 15%,相應(yīng)減少了變電站擴(kuò)建計劃,降低了配套設(shè)施的建設(shè)投入。該技術(shù)從能源消費(fèi)側(cè)優(yōu)化負(fù)荷分布,在實現(xiàn)節(jié)能減排的同時,為電網(wǎng)基礎(chǔ)設(shè)施的可持續(xù)發(fā)展提供了支撐。 水蓄冷技術(shù)的電力需求側(cè)管理,每1GW容量減少電網(wǎng)調(diào)峰成本1.5億...
采用 LCC(全生命周期成本)模型評估水蓄冷系統(tǒng)經(jīng)濟(jì)性時,需綜合考量設(shè)備折舊、維護(hù)費(fèi)用及能源價格波動等因素。研究顯示,當(dāng)電價差大于或等于 0.4 元 /kWh 且年運(yùn)行時間不少于 2500 小時時,水蓄冷系統(tǒng)的全生命周期成本低于常規(guī)空調(diào)系統(tǒng)。這是因為峰谷電價差帶來的電費(fèi)節(jié)省可覆蓋初期增量投資及運(yùn)維支出。此外,部分地區(qū)官方會提供蓄冷補(bǔ)貼或稅收優(yōu)惠政策,進(jìn)一步縮短投資回收期。例如某園區(qū)項目在享受地方補(bǔ)貼后,LCC 較常規(guī)系統(tǒng)降低 12%,回收期從 6 年縮短至 4.5 年。這種評估模型通過全周期成本測算,為用戶提供更科學(xué)的投資決策依據(jù),助力在合適場景中推廣水蓄冷技術(shù)。楚嶸水蓄冷系統(tǒng)通過低溫送風(fēng)技術(shù)...
傳統(tǒng)水蓄冷技術(shù)以水作為蓄冷介質(zhì),存在儲能密度較低的問題,而研發(fā)納米復(fù)合蓄冷材料(如水合鹽與石墨烯的復(fù)合物)可有效提升儲能密度,減小系統(tǒng)體積。這類新材料通過納米級復(fù)合結(jié)構(gòu)優(yōu)化相變特性,在保持熱穩(wěn)定性的同時,能在更小溫差范圍內(nèi)存儲更多冷量。例如某實驗室研發(fā)的樣品,已實現(xiàn) 5℃溫差下的高儲能密度,相比傳統(tǒng)水蓄冷技術(shù),同等體積下儲能能力提升明顯,特別適合空間受限的應(yīng)用場景。這種材料創(chuàng)新為解決水蓄冷系統(tǒng)占地面積大的痛點(diǎn)提供了新思路,未來若實現(xiàn)產(chǎn)業(yè)化應(yīng)用,可推動水蓄冷技術(shù)在數(shù)據(jù)中心、商業(yè)樓宇等對空間要求較高的場景中拓展,進(jìn)一步提升其市場適用性。水蓄冷系統(tǒng)的低溫防凍液需滿足生物降解標(biāo)準(zhǔn),避免環(huán)境污染。福建零...
美國 ASHRAE 90.1-2019 節(jié)能標(biāo)準(zhǔn)對新建建筑空調(diào)系統(tǒng)應(yīng)用蓄能技術(shù)作出規(guī)范,尤其針對水蓄冷系統(tǒng)的細(xì)節(jié)設(shè)計提出具體要求。標(biāo)準(zhǔn)中明確,水蓄冷系統(tǒng)的管道保溫、自動控制及水質(zhì)管理需滿足技術(shù)指標(biāo):如載冷劑管道需采用厚度≥20mm 的橡塑保溫材料,通過優(yōu)化保溫結(jié)構(gòu)減少冷量損失;自動控制系統(tǒng)應(yīng)具備實時監(jiān)測與調(diào)節(jié)功能,確保蓄冷 / 釋冷過程精細(xì)運(yùn)行;水質(zhì)管理方面需控制水中雜質(zhì)及微生物含量,避免管道結(jié)垢或設(shè)備腐蝕。這些要求從系統(tǒng)組成的各個環(huán)節(jié)入手,通過標(biāo)準(zhǔn)化技術(shù)參數(shù)提升水蓄冷系統(tǒng)的能效與可靠性。該標(biāo)準(zhǔn)為建筑空調(diào)系統(tǒng)的節(jié)能設(shè)計提供了技術(shù)框架,推動水蓄冷等蓄能技術(shù)在新建建筑中規(guī)范應(yīng)用,助力降低建筑能耗。...
水蓄冷系統(tǒng)能夠?qū)?30% - 50% 的日間空調(diào)負(fù)荷轉(zhuǎn)移到夜間,這樣的負(fù)荷轉(zhuǎn)移不僅能降低變壓器的容量需求,還能減少需量電費(fèi)。以上海某寫字樓為例,其進(jìn)行水蓄冷改造后,每年節(jié)省的電費(fèi)超過 120 萬元,同時也緩解了夏季該區(qū)域電網(wǎng)的供電壓力。從經(jīng)濟(jì)角度來看,系統(tǒng)初投資的回收期大約在 5 - 7 年,比較適合電價差大于或等于 0.4 元 /kWh 的地區(qū)。在這些地區(qū),利用夜間低谷電價儲冷,白天高峰時段釋放冷量,既能充分發(fā)揮電價差帶來的成本優(yōu)勢,又能在滿足空調(diào)冷量需求的同時,為電網(wǎng)負(fù)荷調(diào)節(jié)貢獻(xiàn)力量,實現(xiàn)經(jīng)濟(jì)效益與社會效益的雙重提升。水蓄冷技術(shù)通過“填谷”作用,平衡電網(wǎng)負(fù)荷曲線,延緩電網(wǎng)擴(kuò)容。浙江水蓄冷常...
數(shù)字孿生運(yùn)維平臺借助 BIM+IoT 技術(shù)構(gòu)建系統(tǒng)虛擬模型,實時映射物理設(shè)備運(yùn)行狀態(tài),通過數(shù)據(jù)驅(qū)動實現(xiàn)故障預(yù)測與控制策略優(yōu)化。該平臺將水蓄冷系統(tǒng)的設(shè)備參數(shù)、運(yùn)行數(shù)據(jù)與三維模型融合,形成可交互的數(shù)字鏡像,運(yùn)維人員可通過可視化界面監(jiān)測蓄冷罐溫度分層、主機(jī)負(fù)荷等關(guān)鍵指標(biāo)。例如某數(shù)據(jù)中心應(yīng)用數(shù)字孿生平臺后,系統(tǒng)根據(jù)實時冷負(fù)荷預(yù)測調(diào)整蓄冷 / 釋冷策略,結(jié)合設(shè)備健康度分析提前預(yù)警潛在故障,使 PUE 從 1.4 降至 1.25,同時運(yùn)維人力成本降低 30%。這種技術(shù)通過虛實聯(lián)動提升系統(tǒng)管理精度,不僅優(yōu)化了能源效率,還實現(xiàn)了從被動維護(hù)到主動運(yùn)維的轉(zhuǎn)變,為水蓄冷系統(tǒng)的智能化管理提供了技術(shù)支撐,推動行業(yè)向數(shù)字...
用戶對水蓄冷系統(tǒng)的初投資敏感度與電價差關(guān)聯(lián)緊密。當(dāng)?shù)貐^(qū)電價差小于 0.3 元 /kWh 時,系統(tǒng)投資回收期通常超過 8 年,較高的成本回收周期導(dǎo)致用戶決策更為謹(jǐn)慎。這種情況下,需借助金融創(chuàng)新手段降低初期資金壓力。例如采用融資租賃模式,用戶可通過分期支付設(shè)備費(fèi)用,避免一次性大額投入;節(jié)能效益分享模式下,企業(yè)先行投資建設(shè),再從項目節(jié)能收益中按比例分成,實現(xiàn)風(fēng)險共擔(dān)。這些金融工具能將初投資壓力分?jǐn)傊另椖窟\(yùn)營周期,使電價差較低地區(qū)的用戶也能更靈活地采用水蓄冷技術(shù)。通過金融創(chuàng)新與技術(shù)應(yīng)用的結(jié)合,可有效緩解初投資門檻對市場推廣的制約,推動水蓄冷技術(shù)在更多區(qū)域的普及。肯尼亞內(nèi)羅畢水蓄冷項目利用夜間風(fēng)電蓄冷,...
采用 LCC(全生命周期成本)模型評估水蓄冷系統(tǒng)經(jīng)濟(jì)性時,需綜合考量設(shè)備折舊、維護(hù)費(fèi)用及能源價格波動等因素。研究顯示,當(dāng)電價差大于或等于 0.4 元 /kWh 且年運(yùn)行時間不少于 2500 小時時,水蓄冷系統(tǒng)的全生命周期成本低于常規(guī)空調(diào)系統(tǒng)。這是因為峰谷電價差帶來的電費(fèi)節(jié)省可覆蓋初期增量投資及運(yùn)維支出。此外,部分地區(qū)官方會提供蓄冷補(bǔ)貼或稅收優(yōu)惠政策,進(jìn)一步縮短投資回收期。例如某園區(qū)項目在享受地方補(bǔ)貼后,LCC 較常規(guī)系統(tǒng)降低 12%,回收期從 6 年縮短至 4.5 年。這種評估模型通過全周期成本測算,為用戶提供更科學(xué)的投資決策依據(jù),助力在合適場景中推廣水蓄冷技術(shù)。日本《節(jié)能法》鼓勵大型建筑配置...
日本 JIS 工業(yè)標(biāo)準(zhǔn)對水蓄冷系統(tǒng)的安全性與耐久性作出嚴(yán)格規(guī)范,為行業(yè)提供技術(shù)依據(jù)。標(biāo)準(zhǔn)要求蓄冷罐需通過 1.2 倍工作壓力的水壓試驗,確保設(shè)備在超壓工況下的結(jié)構(gòu)安全;控制系統(tǒng)需具備斷電自保護(hù)功能,在突發(fā)停電時自動保存運(yùn)行數(shù)據(jù)并啟動保護(hù)機(jī)制,避免設(shè)備故障;防凍液需滿足 JIS K2234 規(guī)定的生物降解性要求,減少對環(huán)境的潛在危害。這些標(biāo)準(zhǔn)從設(shè)備強(qiáng)度、系統(tǒng)穩(wěn)定性、環(huán)保性等維度建立技術(shù)規(guī)范,不僅保障了水蓄冷系統(tǒng)在長期運(yùn)行中的可靠性,也推動行業(yè)采用更環(huán)保的材料與設(shè)計。通過嚴(yán)格的標(biāo)準(zhǔn)要求,日本水蓄冷系統(tǒng)在安全性和耐久性方面形成了成熟的技術(shù)體系,為相關(guān)項目的設(shè)計、制造及運(yùn)維提供了可遵循的技術(shù)準(zhǔn)則。水蓄...
國家標(biāo)準(zhǔn)《蓄冷空調(diào)系統(tǒng)工程技術(shù)規(guī)程》對蓄冷空調(diào)系統(tǒng)的關(guān)鍵性能作出明確規(guī)定,以規(guī)范行業(yè)技術(shù)應(yīng)用。標(biāo)準(zhǔn)中明確要求蓄冷率不低于 25%,即蓄冷量需占系統(tǒng)總冷量的 25% 以上;蓄冷罐漏冷率需控制在 0.8%/24h 以內(nèi),以減少冷量損耗;系統(tǒng)綜合能效比應(yīng)達(dá)到 3.5 及以上,保障整體運(yùn)行效率。這些指標(biāo)涵蓋了蓄冷率、蓄冷裝置性能、系統(tǒng)能效等主要方面,是項目設(shè)計、建設(shè)及驗收的重要依據(jù)。若項目違反相關(guān)標(biāo)準(zhǔn),將無法通過節(jié)能驗收,進(jìn)而影響補(bǔ)貼申領(lǐng)。該標(biāo)準(zhǔn)的實施為蓄冷空調(diào)系統(tǒng)的技術(shù)規(guī)范和質(zhì)量控制提供了統(tǒng)一標(biāo)尺,推動行業(yè)健康有序發(fā)展。廣東楚嶸水蓄冷設(shè)備采用環(huán)保冷媒,符合歐盟RoHS環(huán)保標(biāo)準(zhǔn)。中國臺灣標(biāo)準(zhǔn)水蓄冷費(fèi)用...
典型水蓄冷系統(tǒng)主要由制冷機(jī)組、蓄冷罐、換熱器及控制系統(tǒng)構(gòu)成。夜間電價低谷時,制冷機(jī)組以低負(fù)荷狀態(tài)運(yùn)行,通過乙二醇溶液或載冷劑將冷量輸送至蓄冷罐內(nèi),逐步降低水溫實現(xiàn)冷量儲存;白天用電高峰階段,循環(huán)泵會將蓄冷罐中的冷水輸送至空調(diào)末端,借助板式換熱器與空調(diào)系統(tǒng)進(jìn)行熱量交換,釋放儲存的冷量。部分系統(tǒng)會采用分層蓄冷技術(shù),通過布水器優(yōu)化水流分布,減少冷熱水混合現(xiàn)象,以此提高儲能效率。這種系統(tǒng)通過各組件的協(xié)同運(yùn)作,實現(xiàn)了電能與冷量的轉(zhuǎn)換及儲存,在平衡電網(wǎng)負(fù)荷、降低運(yùn)行成本等方面發(fā)揮著重要作用。歐盟ErP指令要求,水蓄冷系統(tǒng)季節(jié)性能系數(shù)需達(dá)5.0以上。中國香港本地水蓄冷要多少錢歐盟 “地平線 2020” 計劃...
水蓄冷技術(shù)因系統(tǒng)構(gòu)造簡單,初投資成本相對較低,但儲能密度為冰蓄冷的 1/3 至 1/5。以實際應(yīng)用為例,1000 立方米的水蓄冷罐大約可存儲 3000RTH 的冷量,而相同體積的冰蓄冷槽存儲冷量可達(dá) 10000RTH 以上。這種技術(shù)的適用場景具有一定針對性,更適合冷負(fù)荷峰值不高、電價差較小或擁有充裕安裝空間的情況,像中小型商業(yè)建筑就常采用水蓄冷系統(tǒng)。這類建筑往往對冷量需求相對均衡,且有足夠場地容納較大體積的蓄冷罐,通過水蓄冷技術(shù)既能利用電價差降低運(yùn)行成本,又能憑借簡單的系統(tǒng)結(jié)構(gòu)減少維護(hù)工作量,在經(jīng)濟(jì)性和實用性上達(dá)到較好的平衡。水蓄冷技術(shù)的低溫腐蝕問題,需采用304不銹鋼管道解決。廠房水蓄冷常用...
EMC(合同能源管理)模式能有效降低用戶采用水蓄冷系統(tǒng)的初期投資風(fēng)險。能源服務(wù)公司(ESCO)會負(fù)責(zé)系統(tǒng)的投資、建設(shè)及運(yùn)營全過程,通過與用戶分享節(jié)能收益來回收成本。這種模式下,用戶無需承擔(dān)前期高額投資,只需在系統(tǒng)運(yùn)行后按約定比例支付節(jié)能效益費(fèi)用。如北京某醫(yī)院與 ESCO 合作建設(shè)水蓄冷系統(tǒng),ESCO 全額承擔(dān)初投資,醫(yī)院則按節(jié)能效益的 60% 向其支付費(fèi)用,雙方通過這種合作方式實現(xiàn)了共贏。EMC 模式將節(jié)能效果與收益直接掛鉤,既減輕了用戶的資金壓力,又促使 ESCO 優(yōu)化系統(tǒng)運(yùn)行效率,特別適合節(jié)能改造需求明顯但資金有限的用戶,為水蓄冷技術(shù)的推廣提供了靈活的商業(yè)合作路徑。水蓄冷技術(shù)的動態(tài)蓄冷技術(shù)...
部分用戶對水蓄冷系統(tǒng)的政策穩(wěn)定性存在擔(dān)憂,尤其擔(dān)心峰谷電價政策調(diào)整會影響項目收益。這種情況下,可通過多種方式增強(qiáng)應(yīng)對能力:采用合同能源管理模式,由專業(yè)企業(yè)負(fù)責(zé)項目投資與運(yùn)營,從節(jié)能收益中分成,降低用戶對電價波動的風(fēng)險;借助電力市場化交易機(jī)制,簽訂中長期購電協(xié)議鎖定電價,穩(wěn)定成本收益預(yù)期;選擇可逆式蓄冷系統(tǒng),該系統(tǒng)可根據(jù)電價與負(fù)荷變化靈活切換蓄冷與供冷模式,當(dāng)峰谷電價差縮小時,仍能通過直接供冷保障系統(tǒng)運(yùn)行效率。例如某工業(yè)園區(qū)采用可逆式系統(tǒng)并簽訂三年期購電協(xié)議,即便電價政策微調(diào),仍通過模式切換保持12%的年收益率。這些措施通過機(jī)制設(shè)計與技術(shù)創(chuàng)新,幫助用戶降低對政策變動的敏感度,提升水蓄冷項目的投資...
日本 JIS 工業(yè)標(biāo)準(zhǔn)對水蓄冷系統(tǒng)的安全性與耐久性作出嚴(yán)格規(guī)范,為行業(yè)提供技術(shù)依據(jù)。標(biāo)準(zhǔn)要求蓄冷罐需通過 1.2 倍工作壓力的水壓試驗,確保設(shè)備在超壓工況下的結(jié)構(gòu)安全;控制系統(tǒng)需具備斷電自保護(hù)功能,在突發(fā)停電時自動保存運(yùn)行數(shù)據(jù)并啟動保護(hù)機(jī)制,避免設(shè)備故障;防凍液需滿足 JIS K2234 規(guī)定的生物降解性要求,減少對環(huán)境的潛在危害。這些標(biāo)準(zhǔn)從設(shè)備強(qiáng)度、系統(tǒng)穩(wěn)定性、環(huán)保性等維度建立技術(shù)規(guī)范,不僅保障了水蓄冷系統(tǒng)在長期運(yùn)行中的可靠性,也推動行業(yè)采用更環(huán)保的材料與設(shè)計。通過嚴(yán)格的標(biāo)準(zhǔn)要求,日本水蓄冷系統(tǒng)在安全性和耐久性方面形成了成熟的技術(shù)體系,為相關(guān)項目的設(shè)計、制造及運(yùn)維提供了可遵循的技術(shù)準(zhǔn)則。水蓄...
水蓄冷系統(tǒng)通過夜間運(yùn)行機(jī)制緩解城市熱島效應(yīng),其原理是利用夜間低谷電蓄冷,減少白天空調(diào)外機(jī)的排熱總量。傳統(tǒng)空調(diào)系統(tǒng)白天集中運(yùn)行時,外機(jī)散熱會加劇城市局部溫升,而水蓄冷系統(tǒng)將制冷主機(jī)運(yùn)行時段轉(zhuǎn)移至夜間,白天主要通過釋放蓄冷罐內(nèi)冷量供冷,大幅降低日間空調(diào)設(shè)備的排熱負(fù)荷。某研究表明,在 10 平方公里區(qū)域內(nèi)部署水蓄冷系統(tǒng)后,夏季地表溫度可下降 0.5-1.0℃,這一溫度降幅能有效改善城市微氣候環(huán)境。該技術(shù)從能源消費(fèi)時段和散熱源頭雙重調(diào)節(jié),既優(yōu)化電網(wǎng)負(fù)荷,又通過減少日間熱排放緩解熱島效應(yīng),為高密度建成區(qū)的生態(tài)環(huán)境改善提供了技術(shù)路徑,契合城市可持續(xù)發(fā)展的低碳需求。水蓄冷系統(tǒng)夜間運(yùn)行噪音低,楚嶸技術(shù)兼顧節(jié)能...
水蓄冷技術(shù)是借助水的顯熱變化來實現(xiàn)能量存儲的方式。在夜間電價處于低谷階段,制冷機(jī)組會把水冷卻到 4 - 7℃,將冷量儲存起來;到了白天用電高峰時期,再通過換熱設(shè)備把冷量釋放到空調(diào)系統(tǒng)中。和冰蓄冷技術(shù)相比較,水蓄冷不需要處理相變過程,這使得系統(tǒng)結(jié)構(gòu)更為簡單,不過它的儲能密度相對較低。就像 1 立方米的水,溫度下降 10℃能夠儲存大約 42 兆焦耳的冷量,要是想達(dá)到和其他儲能方式同等的儲能效果,就需要更大的體積。這種技術(shù)在合理利用電價差、平衡電網(wǎng)負(fù)荷等方面具有一定的應(yīng)用價值,通過夜間儲冷、白天放冷的模式,為空調(diào)系統(tǒng)的運(yùn)行提供了一種較為經(jīng)濟(jì)的冷量供應(yīng)方式。水蓄冷技術(shù)的熱回收功能,融冷余熱可用于生活熱...
數(shù)字孿生運(yùn)維平臺借助 BIM+IoT 技術(shù)構(gòu)建系統(tǒng)虛擬模型,實時映射物理設(shè)備運(yùn)行狀態(tài),通過數(shù)據(jù)驅(qū)動實現(xiàn)故障預(yù)測與控制策略優(yōu)化。該平臺將水蓄冷系統(tǒng)的設(shè)備參數(shù)、運(yùn)行數(shù)據(jù)與三維模型融合,形成可交互的數(shù)字鏡像,運(yùn)維人員可通過可視化界面監(jiān)測蓄冷罐溫度分層、主機(jī)負(fù)荷等關(guān)鍵指標(biāo)。例如某數(shù)據(jù)中心應(yīng)用數(shù)字孿生平臺后,系統(tǒng)根據(jù)實時冷負(fù)荷預(yù)測調(diào)整蓄冷 / 釋冷策略,結(jié)合設(shè)備健康度分析提前預(yù)警潛在故障,使 PUE 從 1.4 降至 1.25,同時運(yùn)維人力成本降低 30%。這種技術(shù)通過虛實聯(lián)動提升系統(tǒng)管理精度,不僅優(yōu)化了能源效率,還實現(xiàn)了從被動維護(hù)到主動運(yùn)維的轉(zhuǎn)變,為水蓄冷系統(tǒng)的智能化管理提供了技術(shù)支撐,推動行業(yè)向數(shù)字...
歐盟 “地平線 2020” 計劃對水蓄冷與可再生能源耦合項目給予資金支持,推動技術(shù)創(chuàng)新?!癆quaStorage4.0” 項目作為典型案例,聚焦自修復(fù)蓄冷材料研發(fā),通過材料微觀結(jié)構(gòu)設(shè)計實現(xiàn)水溫自動分層,避免傳統(tǒng)系統(tǒng)因熱混合導(dǎo)致的冷量損失,將系統(tǒng)使用壽命延長至 20 年。該項目整合材料科學(xué)、流體力學(xué)等多學(xué)科技術(shù),開發(fā)的新型復(fù)合材料兼具蓄冷與自我修復(fù)功能,可在溫度波動時自動調(diào)整分子排列,維持穩(wěn)定的熱分層狀態(tài)。歐盟通過此類項目促進(jìn)水蓄冷技術(shù)與太陽能、風(fēng)能等可再生能源協(xié)同,提升綜合能效,為區(qū)域供冷系統(tǒng)提供低碳解決方案,助力實現(xiàn)歐盟綠色新政目標(biāo),推動能源系統(tǒng)向高效、可持續(xù)方向轉(zhuǎn)型。楚嶸技術(shù)團(tuán)隊提供水蓄冷...
據(jù) MarketsandMarkets 數(shù)據(jù)顯示,2024 年全球水蓄冷市場規(guī)模達(dá)到 25 億美元,預(yù)計到 2029 年將增至 40 億美元,期間復(fù)合年增長率(CAGR)為 9.8%。這一增長趨勢主要由亞太地區(qū)推動,該區(qū)域在全球市場中貢獻(xiàn)了超過 40% 的份額。中國、印度及東南亞地區(qū)成為市場增長的主要引擎,一方面得益于這些地區(qū)快速的城市化進(jìn)程和建筑能耗增長,另一方面源于政策對節(jié)能技術(shù)的支持以及峰谷電價機(jī)制的普及。此外,歐美市場因既有建筑改造需求和可再生能源整合趨勢,也保持穩(wěn)定增長。全球水蓄冷市場的擴(kuò)張,反映出節(jié)能技術(shù)在商業(yè)建筑、數(shù)據(jù)中心等領(lǐng)域的應(yīng)用潛力不斷釋放,行業(yè)正朝著高效化、低碳化方向...
國際水蓄冷市場目前由約克、特靈、麥克維爾等傳統(tǒng)制冷巨頭主導(dǎo),這些企業(yè)的產(chǎn)品憑借全生命周期成本低、系統(tǒng)兼容性強(qiáng)等優(yōu)勢占據(jù)主要市場份額。它們在雙工況主機(jī)設(shè)計、蓄冷罐優(yōu)化等主要技術(shù)領(lǐng)域積累深厚,項目經(jīng)驗覆蓋全球多地大型工程。與此同時,國內(nèi)企業(yè)如冰輪環(huán)境通過技術(shù)引進(jìn)與自主創(chuàng)新結(jié)合的方式實現(xiàn)突破,在低溫送風(fēng)技術(shù)、智能預(yù)測控制算法等領(lǐng)域形成差異化競爭力,市場份額已提升至 20%。這類企業(yè)依托本土項目經(jīng)驗,在分層蓄冷罐設(shè)計、電價信號聯(lián)動控制等場景化方案上更具適配性,不僅服務(wù)于國內(nèi)商業(yè)地產(chǎn)、數(shù)據(jù)中心等領(lǐng)域,還逐步參與東南亞、中東等海外項目,推動國產(chǎn)水蓄冷技術(shù)在國際市場的競爭力提升。水蓄冷技術(shù)的合同能源管理模式...
水蓄冷產(chǎn)業(yè)鏈覆蓋多個關(guān)鍵環(huán)節(jié),形成完整的產(chǎn)業(yè)生態(tài)。上游環(huán)節(jié)主要包括制冷機(jī)組與蓄冷材料供應(yīng),制冷機(jī)組領(lǐng)域有約克、特靈等企業(yè)提供雙工況主機(jī)等設(shè)備,蓄冷材料領(lǐng)域則有巴斯夫、陶氏等企業(yè)供應(yīng)乙二醇溶液、納米復(fù)合蓄冷材料等。中游環(huán)節(jié)由系統(tǒng)集成商主導(dǎo),如雙良節(jié)能、冰輪環(huán)境等企業(yè),負(fù)責(zé)將設(shè)備與材料整合為完整的水蓄冷系統(tǒng),提供從設(shè)計、建設(shè)到調(diào)試的一體化服務(wù)。下游環(huán)節(jié)面向多元應(yīng)用終端,涵蓋商業(yè)地產(chǎn)、數(shù)據(jù)中心、工業(yè)園區(qū)等場景。在產(chǎn)業(yè)鏈各環(huán)節(jié)中,系統(tǒng)集成環(huán)節(jié)技術(shù)壁壘較高,需兼顧設(shè)備匹配與場景適配,其毛利率超過 25%,成為產(chǎn)業(yè)鏈中的主要價值環(huán)節(jié),推動著水蓄冷技術(shù)在不同領(lǐng)域的實際應(yīng)用與項目落地。廣東楚嶸參與制定水蓄冷行...
水蓄冷系統(tǒng)能夠?qū)?30% - 50% 的日間空調(diào)負(fù)荷轉(zhuǎn)移到夜間,這樣的負(fù)荷轉(zhuǎn)移不僅能降低變壓器的容量需求,還能減少需量電費(fèi)。以上海某寫字樓為例,其進(jìn)行水蓄冷改造后,每年節(jié)省的電費(fèi)超過 120 萬元,同時也緩解了夏季該區(qū)域電網(wǎng)的供電壓力。從經(jīng)濟(jì)角度來看,系統(tǒng)初投資的回收期大約在 5 - 7 年,比較適合電價差大于或等于 0.4 元 /kWh 的地區(qū)。在這些地區(qū),利用夜間低谷電價儲冷,白天高峰時段釋放冷量,既能充分發(fā)揮電價差帶來的成本優(yōu)勢,又能在滿足空調(diào)冷量需求的同時,為電網(wǎng)負(fù)荷調(diào)節(jié)貢獻(xiàn)力量,實現(xiàn)經(jīng)濟(jì)效益與社會效益的雙重提升。水蓄冷技術(shù)的應(yīng)急備用功能,可為數(shù)據(jù)中心提供4小時斷電保護(hù)。中國臺灣節(jié)能水...
美國 ASHRAE 90.1-2019 節(jié)能標(biāo)準(zhǔn)對新建建筑空調(diào)系統(tǒng)應(yīng)用蓄能技術(shù)作出規(guī)范,尤其針對水蓄冷系統(tǒng)的細(xì)節(jié)設(shè)計提出具體要求。標(biāo)準(zhǔn)中明確,水蓄冷系統(tǒng)的管道保溫、自動控制及水質(zhì)管理需滿足技術(shù)指標(biāo):如載冷劑管道需采用厚度≥20mm 的橡塑保溫材料,通過優(yōu)化保溫結(jié)構(gòu)減少冷量損失;自動控制系統(tǒng)應(yīng)具備實時監(jiān)測與調(diào)節(jié)功能,確保蓄冷 / 釋冷過程精細(xì)運(yùn)行;水質(zhì)管理方面需控制水中雜質(zhì)及微生物含量,避免管道結(jié)垢或設(shè)備腐蝕。這些要求從系統(tǒng)組成的各個環(huán)節(jié)入手,通過標(biāo)準(zhǔn)化技術(shù)參數(shù)提升水蓄冷系統(tǒng)的能效與可靠性。該標(biāo)準(zhǔn)為建筑空調(diào)系統(tǒng)的節(jié)能設(shè)計提供了技術(shù)框架,推動水蓄冷等蓄能技術(shù)在新建建筑中規(guī)范應(yīng)用,助力降低建筑能耗。...
傳統(tǒng)水蓄冷系統(tǒng)依靠人工設(shè)定運(yùn)行策略,在應(yīng)對負(fù)荷波動時存在局限性。而基于 AI 的預(yù)測控制算法能實時優(yōu)化制冷與釋冷比例,通過結(jié)合天氣預(yù)報、電價信號以及建筑熱惰性等多維度數(shù)據(jù),實現(xiàn)全局比較好的運(yùn)行策略調(diào)整。這種智能化控制方式可精細(xì)預(yù)判冷負(fù)荷變化趨勢,動態(tài)調(diào)節(jié)蓄冷與放冷節(jié)奏,避免人工設(shè)定的滯后性與經(jīng)驗偏差。試驗數(shù)據(jù)顯示,采用 AI 控制的水蓄冷系統(tǒng)能效可提升 6% - 10%。例如某智能建筑應(yīng)用該算法后,不僅冷量供應(yīng)與負(fù)荷需求匹配度提高,還通過電價信號自動調(diào)整儲冷時段,在降低能耗的同時進(jìn)一步節(jié)省了運(yùn)行成本,為水蓄冷系統(tǒng)的智能化升級提供了可行路徑。廣東楚嶸水蓄冷技術(shù)結(jié)合熱回收,融冷余熱用于生活熱水供應(yīng)...
水蓄冷產(chǎn)業(yè)鏈覆蓋多個關(guān)鍵環(huán)節(jié),形成完整的產(chǎn)業(yè)生態(tài)。上游環(huán)節(jié)主要包括制冷機(jī)組與蓄冷材料供應(yīng),制冷機(jī)組領(lǐng)域有約克、特靈等企業(yè)提供雙工況主機(jī)等設(shè)備,蓄冷材料領(lǐng)域則有巴斯夫、陶氏等企業(yè)供應(yīng)乙二醇溶液、納米復(fù)合蓄冷材料等。中游環(huán)節(jié)由系統(tǒng)集成商主導(dǎo),如雙良節(jié)能、冰輪環(huán)境等企業(yè),負(fù)責(zé)將設(shè)備與材料整合為完整的水蓄冷系統(tǒng),提供從設(shè)計、建設(shè)到調(diào)試的一體化服務(wù)。下游環(huán)節(jié)面向多元應(yīng)用終端,涵蓋商業(yè)地產(chǎn)、數(shù)據(jù)中心、工業(yè)園區(qū)等場景。在產(chǎn)業(yè)鏈各環(huán)節(jié)中,系統(tǒng)集成環(huán)節(jié)技術(shù)壁壘較高,需兼顧設(shè)備匹配與場景適配,其毛利率超過 25%,成為產(chǎn)業(yè)鏈中的主要價值環(huán)節(jié),推動著水蓄冷技術(shù)在不同領(lǐng)域的實際應(yīng)用與項目落地。廣州新電視塔通過水蓄冷技...
乙二醇溶液在低于 - 5℃的環(huán)境中容易結(jié)晶,同時會對金屬管道產(chǎn)生腐蝕作用。為解決這一問題,需選用 304 不銹鋼或高密度聚乙烯(HDPE)材質(zhì)的管道,并在溶液中添加防腐劑。這些材料具有良好的抗腐蝕性能,能有效抵御乙二醇溶液的侵蝕,減少管道泄漏風(fēng)險。但如果忽視管道維護(hù),可能引發(fā)嚴(yán)重后果。如某項目因未及時更換老化管道,導(dǎo)致乙二醇溶液泄漏,造成系統(tǒng)癱瘓長達(dá) 2 個月,直接損失超過 300 萬元。這一案例表明,在水蓄冷系統(tǒng)運(yùn)行中,除了合理選擇管道材質(zhì),還需建立定期檢修機(jī)制,及時發(fā)現(xiàn)并更換老化部件,避免因材料問題影響系統(tǒng)正常運(yùn)行,保障設(shè)備使用壽命和系統(tǒng)安全性。楚嶸技術(shù)團(tuán)隊提供水蓄冷系統(tǒng)全生命周期維護(hù),保...
傳統(tǒng)水蓄冷系統(tǒng)依靠人工設(shè)定運(yùn)行策略,在應(yīng)對負(fù)荷波動時存在局限性。而基于 AI 的預(yù)測控制算法能實時優(yōu)化制冷與釋冷比例,通過結(jié)合天氣預(yù)報、電價信號以及建筑熱惰性等多維度數(shù)據(jù),實現(xiàn)全局比較好的運(yùn)行策略調(diào)整。這種智能化控制方式可精細(xì)預(yù)判冷負(fù)荷變化趨勢,動態(tài)調(diào)節(jié)蓄冷與放冷節(jié)奏,避免人工設(shè)定的滯后性與經(jīng)驗偏差。試驗數(shù)據(jù)顯示,采用 AI 控制的水蓄冷系統(tǒng)能效可提升 6% - 10%。例如某智能建筑應(yīng)用該算法后,不僅冷量供應(yīng)與負(fù)荷需求匹配度提高,還通過電價信號自動調(diào)整儲冷時段,在降低能耗的同時進(jìn)一步節(jié)省了運(yùn)行成本,為水蓄冷系統(tǒng)的智能化升級提供了可行路徑。水蓄冷技術(shù)的國際標(biāo)準(zhǔn)互認(rèn),中企在越南項目直接采用中國標(biāo)...
中國與東盟國家簽署《蓄冷技術(shù)標(biāo)準(zhǔn)互認(rèn)協(xié)議》,推進(jìn)東盟區(qū)域標(biāo)準(zhǔn)化合作。該協(xié)議推動 JIS、ASHRAE、GB 等標(biāo)準(zhǔn)在區(qū)域內(nèi)等效采用,減少跨國工程中因標(biāo)準(zhǔn)差異產(chǎn)生的技術(shù)壁壘與成本支出。通過建立標(biāo)準(zhǔn)互認(rèn)機(jī)制,各國在水蓄冷系統(tǒng)的設(shè)計、施工、驗收等環(huán)節(jié)可直接采用互認(rèn)標(biāo)準(zhǔn),避免重復(fù)認(rèn)證與技術(shù)調(diào)整。例如某中企在越南建設(shè)水蓄冷項目時,直接采用中國 GB 標(biāo)準(zhǔn)進(jìn)行設(shè)計與施工,順利通過當(dāng)?shù)仳炇?,較傳統(tǒng)模式縮短建設(shè)周期 3 個月,降低成本 15%。這種標(biāo)準(zhǔn)化合作促進(jìn)了蓄冷技術(shù)在東盟市場的推廣,為區(qū)域內(nèi)能源基礎(chǔ)設(shè)施建設(shè)提供了統(tǒng)一的技術(shù)框架,既助力中國企業(yè) “走出去”,也推動?xùn)|盟國家提升能源利用效率,契合區(qū)域可持續(xù)發(fā)...
水蓄冷系統(tǒng)初投資相比常規(guī)空調(diào)會高出 15%-25%,主要是蓄冷罐、低溫管道及控制系統(tǒng)的投入增加。不過在運(yùn)行階段,可通過峰谷電價差來抵消這部分增量成本。比如某辦公樓項目,初投資多投入 600 萬元,但每年能節(jié)省電費(fèi) 90 萬元,按此計算靜態(tài)投資回收期約 6.7 年。要是再考慮需量電費(fèi)的減免,回收期還能縮短到 5 年以內(nèi)。這種投資模式在電價差較大的地區(qū)優(yōu)勢明顯,雖然前期投入有所增加,但長期運(yùn)行中,憑借電價差帶來的成本節(jié)約,能逐步收回額外投資,在經(jīng)濟(jì)性上具備可行性,適合對節(jié)能和長期成本控制有需求的項目。水蓄冷技術(shù)利用夜間低價電蓄冷,白天釋冷降低空調(diào)能耗。安徽動態(tài)水蓄冷施工典型水蓄冷系統(tǒng)主要由制冷機(jī)組...